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SIX-MODE INTERACTION OF PANEL FLUTTER
WITH JOINT RELAXATION
PART I: DETERMINISTIC ANALYSIS

R. A. Ibrahim, D. M. Beloiu
Wayne State University
Department of Mechanical Engineering
Detroit, MI 48202

C. L. Pertit
Air Force Research Laboratory
AFRL/VASD
Wright-Patterson Air Force Base, OH 45433

ABSTRACT

The influence of boundary condition relaxation on two-dimensional panel flutter is
studied in the presence of in-plane loading. The boundary value problem of the panel
involves time-dependent boundary conditions that are converted into autonomous form
using a special coordinate transformation. Galerkin’s method is used to discretize the
panel partial differential equation into six nonlinear ordinary differential equations -
represénting the first six modes. The influence of boundary condition relaxation on the
panel modal frequencies and limit cycle amplitudes in the time and frequency domains is
examined through the spectrogram of the generalized coordinate for each mode. The
relaxation and system nonlinearity are found to have opposite effects on the time
evolution of the panel frequency. Depending on the system damping and dynamic
pressure, the panel frequency content can increase or decrease with time as the boundary
conditions approach simple supports. Bifurcation diagrams are generated by taking the
dynamic pressure and relaxation parameter as control parameters. They reveal different
regions of periodic, quasi-periodic, and chaotic motions. These regions take place only

when the in-plane load exceeds the Euler buckling load.



L. INTRODUCTION

It has been observed that apparently identical aircraft can exhibit different dynamic
characteristics under same flight conditions. This difference owes its origin to the
stochastic nature of structural properties and the environment. That is, the sensitivity of
the dynamic system behavior is directly linked to variations in its physical properties; in
aeroelastic systems, response variability is compounded by interaction with the
surrounding fluid. The physical properties of aeroelastic structures are affected by the
boundary conditions relaxation and joint uncertainties. Generally, the main sources of

uncertainties of aerospace structures include:

1. Randomness in material properties because of variations in material composition.

2. Randomness in structural dimensions due to manufacturing variations and thermal
effects. |

3. Randomness in boundary conditions due to preload and relaxation variations in
mechanical joints.

4. Randomness of external excitations.

The present work is focused on the third source and its mechanisms. There are many
factors that affect mechanical joints and fasteners, such as friction, hardness, finish, and
dimensions of all parts, and gasket creep (Bickford, 1990). Each factor will vary from
fastener to fastener and joint to joint because of manufacturing or usage tolerances. A
fastener subjected to vibration will not lose all pre-loads immediately. First there is a
slow loss of pre-load caused by various relaxation mechanisms. Vibration increases
relaxation through the consequent wear and hammering. After sufficient pre-load is lost,
friction forces drop below a critical level and, if the joint is bolted, the nut actually starts
to back off and shake loose. As relaxation occurs, the joint fails to mimic ideal boundary

conditions; instead, the joint’s properties become time dependent and uncertain.

The present work is motivated by some recent results on the sensitivity and variability of
the response of structural stochasticity (see, for example, Ibrahim, 1987, and Manohar

and Ibrahim, 1999) and by the recent assessment of joint uncertainties by Ibrahim and




Pettit (2004). These problems are complex in nature because every joint involves
different sources of uncertainty and non-smooth nonlinear characteristics. For example,
the contact forces are not ideally plane because of manufacturing tolerances.
Furthermore, the initial forces will be redistributed non-uniformly in the presence of
lateral loads. This is in addition to the prying load, which induces nonlinear tension in the
bolt and nonlinear compression in the joint. The main problems encountered in the design
analysis of bolted joints with parameter uncertainties include random eigenvalues,

response statistics, and probability of failure.

The effect of uncertainty in the boundary conditions combined with the variability of
material properties on nonlinear panel aeroelastic response was studied by Lindsley, et al.
(2002a, b). It was shown that the flutter problem of aeroelastic structures could be
handled when random uncertainties are introduced in the structural model. The pinned
and fixed boundary conditions were modeled as limiting cases of rotational springs on the
boundary, which possess zero and infinite stiffness, respectively. Accordingly, rotational
spring stiffness was used to parameterize the boundary conditions. Parametric uncertainty
was examined by modeling variability in Young’s modulus and the boundary condition
parameter. The variability in the boundary conditions was restricted to a single value
along the plate boundary edges for each realization. For values of the dynamic pressure in
the deterministic limit cycle oscillation (LCO) range, the variability in the boundary
conditions affects the plate deflection in an essentially linear manner. However, for
values of dynamic pressure in the neighborhood of bifurcation point, the relationship is
nonlinear. Variation in boundary conditions results in a softening effect of the clamped

panel, and thus induces an increase in the amplitude of plate oscillations.

Relaxation effects cause time-dependent boundary conditions and depend on the level of
structural vibration. In other words, there are uncertainties in the boundary conditions in
addition to a random field due to system parameter uncertainties. Under static loads, the
design of such systems is governed by the random field alone, whereas under dynamic
loads, the designer also must take into account the temporal fluctuations of the boundary
conditions. During operation, the nonlinear random response can generally éhange a

joint’s mechanical properties and hence create new self-induced uncertainties.




The studies of panel flutter were concentrated on parametric analysis of the stability
boundaries and the amplitude of limit cycle oscillations under different boundary
conditions. At the same time, it was shown that a panel subjected to a combination of
airflow and in-plane loading experiences a complex range of motions, including static
buckling (divergence), quasi-periodic motion, and chaos in addition to limit cycle
oscillations. Dowell (1982) showed that a panel under the combined effect of fluid flow
and in-plane compression exhibits chaotic motion for certain values of some control
parameters. Dowell (1984) observed chaos via period doubling and intermittency while
increasing the compressive in-plane loading. The existence of multiple attractors and the
coexistence of both symmetric and asymmetric limit cycles were observed by Bolotin et
al. (1998) using a two degree-of-freedom approximation of an elastic panel. They studied
the transition between different stability regions. The stability regions of a simply
supported two-dimensional panel subjected to compressive loading were revisited
recently by Epureanu et al. (2004). They used bifurcation diagrams for two control
parameters to determine stability boundaries and Lyapunov exponents. Thé effect of
damping on stability boundaries as well as on LCO was considered by Kuo et al. (1972),
Bolotin et al. (2002), Pourtakdoust and Fazelzadeh (2003). Kuo et al. (1972) showed that
the edge compression and viscous structural damping increases flutter amplitudes while

the aerodynamic damping decreases flutter amplitude.

In this paper, nonlinear panel flutter with relaxation in the boundary conditions is
studied based on a phenomenological model of joint preload relaxation pressure
superposed on linear piston theory loads. The conventional boundary value problem of
the panel involves time-dependent boundary conditions, which are converted to an
autonomous form using a special coordinate transformation inspired by the work of Qiao,
et al. (2000). It has been claimed (Dowell, 1966) that accurate results of panel flutter are
obtained by considering at least six-mode interaction. The present analysis extends the
analysis of Ibrahim, et al. (2004) to include six-mode interaction in the presence of

boundary condition relaxation.




II. ANALYTICAL MODELING

Consider a two dimensional panel exposed to supersonic flow as shown in Figure 1. In
order to estimate the work done by aerodynamic loading, the pressure on the panel is

estimated using the linear piston theory (Ashley and Zartarian, 1956)
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where w(x,?) is the panel deflection, which is a function of position, x, and time, ¢,
M =U_/a, is the Mach number, U_ is the undisturbed gas flow speed, ad; = \/;m_
is the speed of sound, p, and p, are the undisturbed free gas stream pressure and
density, respectively, p is the pressure of the gas flow at the panel surface, y=C » /C,

is the ratio of specific heat at constant pressure, C,, and volume, C, .
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Figure 1. Schematic diagram of a two-dimensional panel with boundary conditions
relaxation

The governing nonlinear equation of motion for the panel is developed using

Hamilton's principle, which yields (Ibrahim, et al., 1990)
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m,, is the panel mass per unit area, a is the panel length, £ is Young's modulus, 4 is the

plate thickness, D = Eh’ /(12(1-v?)) is the panel stiffness, v is Poisson's ratio, Ap, is
the air pressure difference across the panel, N, is the external in-plane load per unit

span-wise length, and ¢ is a linear viscous damping coefficient. Equation (2) is subject to

the boundary conditions

D azvg((z),t) (1) aW(O 1) -0, w(0,£) =0 (3a,b)
x
D azw(‘;a t) o, (t) aw(a t) O’ w(a, t) =0 (3C’d)

where ¢, (f) and o,(f) measure the end slopes and represent torsional stiffness
parameters such that for ¢, (f) =, (t) =% we have the case of purely clamped-clamped
panel. On the other hand, if we have simple supports, then o (f)=a,(f)=0. In real
situations, ¢,(f) and «,(¢f) do not a‘ssume these limiting cases; instead, they are very

large for clamped supports or very small for simple supports. In the dynamic case the
boundary conditions (3a,c) are non-autonomous. In order to convert these conditions into
an autonomous form, we introduce the following transformation of the response

coordinate,

w(x,t) = {(3‘-) +28,(2002,) =+ 8, (21, 2,) |u(x,1) = (32, 2, Ju(x, ) @)
a a

where the dimensionless parameter z,(t) = D/ac,(t), i =1,2, represents the ratio of the

bending rigidity to the torsional stiffness of the joints. The functions g,(z;,z,) and



g,(z,,z,) are chosen to render the boundary conditions autonomous for the new

coordinate u(x,t) . Possible expressions of these functions are

1+4z, 2z,(1+4z,)
,Z,) = ——t — Z,,2,) = ———— 25 5
&8s =y 2 1 22) &)=, ©)
In this case, the boundary conditions (3) become
o*u(0,) ’u(a,t)
= >2=0 and #(0,t) =u(a,t)=0. 6
e e (0,8) =u(a,1) (6)
Introducing the following non-dimensional parameters
2 3
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The preload relaxation process is phenomenologically modeled based on
experimental results. In this case, The torsional stiffness parameters are assumed

functions of the number of vibration cycles (Bickford, 1990), » =n(zr),

& (n)=""" = ®)

where the overbar denotes a dimensionless parameter. An explicit analytical expression

for the parameters &,(n) can be obtained from experimental records (Bickford, 1990),

which reveal a slow drop between an original and an asymptotic value of the joint



stiffness. An appropriate elementary function that emulates this behavior may be selected

in the form

1+tanh[—k(n—nc)]} 9

&(n) = &(0) +[a(0) - 5?(00)]{ 1+ tanh{/or ]

where the subscript i has been dropped, and n, is a critical number of cycles, indicating
the location of the inflection point with respect to the origin, n=0. The parameter & is
associated with the slope of the curve at the point, n=n_. The parameters &(0) and
2 () are obtained from the experimental curve. The slope parameter k& can be found by

taking the derivative of equation (9) with respect to #, i.e.,

oaylon, 1
_——————_[5(00)—0_{(0)][ +tanh[#n, ]] (10)

One can write an expression for z(7) by using relations (8) and (10) in the form

20)= 2,2, | 2y~ (2, - 2,) T x (Hf))} (1)

1+tanh(y7,)

<w>

where Z, =z(0), Z_ =z(x), y= PyaE and <@ > is the mean value of the response
7

frequency, which can be taken as the center frequency. The phenomenological
representation given by equation (11) can be used for any initial preload and will cause

the panel to experience non-stationary behavior.

Galerkin’s method is applied to discretize equation (7) by assuming the general

N
solution in the form #(¥,7) = Z‘I’n (X)g,(7) and the corresponding weighting functions

n=l

N
u(x,7)= Z\Pn(f)qn (r) where N is the total number of the basis functions for #(X,7);

n=1

g,(r) are unknown functions to be determined (generalized coordinates); ¢,(r) are
arbitrary functions of time and W, (X) are the assumed orthonormal mode shapes. The

resulting general differential equation is
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where

Om = ;[(ﬂ(f)‘Pn(TC)‘Pm (X)dx ;

C\(n,m) = 6;f¢ "®)Y, @), (¥)dx +4J¢(3)(f)‘1’;(55)‘}’m (X)dx +

+4 |I<0 NP (D), (F)dx + lI(ﬂ(‘”(f)‘l’n ()Y, (X)dx + lf(ﬂ(‘ﬂ%” @)Y, (X)dx ;
Cy(n,m)=6 lj(ﬂ (XY, ()Y, (¥)dx +2 ]40 ), (@), (X)dx +6 ]{/}(35 Y, (D), (F)dx ;
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1
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0
The general solution is assumed in the form

u(x,7)= iqn (r)sinnzx (13)

n=1

where N is the total number of modes, g, (7) are the generalized coordinates. It has been

established that accurate solution of the panel flutter can be achieved by using at least six

modes (see, e.g., Dowell, 1966). The inclusion of six modes results in more tedious

analysis and for this reason we introduce the simplification, z, =z, =z/2, which makes



the boundary stiffness values to be equal. The resulting set of six equations may be

written in matrix form

[M(r)]{q'}+[C(;,f,/1,z)]{q}+[K(T,NO,A)]{q}=[D(f)]{q3}+ 3 i leq.q?} +

i=1,3,5 j=1, j#i
itjzk

+2, 2 2{ faaja.}+{P) (14)

i J Kk
where [M(r)] is time dependent mass matrix; [C(c_,“ N ,A,r)] is the damping matrix,
which depends on the viscous damping ratio ¢, mass parameter, f , and relaxation
parameter, z(7); [K (r,ﬁo,l)] is the stiffness matrix; [D(z)] is the coefficient matrix of

cubic terms, and {P} is the pressure vector, whose elements are non-zero only for odd

modes. The structure of these matrices is given in the Appendix.

Equations (14) are solved numerically in the time domain for a typical relaxation

curve. The resulting solution is given in terms of the transformed response, # , or rather

in terms of its modal coordinates, g,, i =1..6 . One should estimate the modal response in

terms of its physical generalized coordinate,

w(x,7)=p(X)u(x,r) and W(x,7)= ién (r)sinnzx (15)

n=1

where @ :[fz+2g1(zl,z2))_c+g2(zl,zz):| and g, are given by equation (5). The
relationship between the physical coordinates §,(r) and the generalized transformed

coordinates g, (7) is

N N
>4, (z)sinnrX =[ ¥ +2g,(2)T + &, (2)]>4,(7)sinnz® (16)
n=l n=1

Integrating the above equation

j:[i g,(7)sin nﬂf} dx = j:[(fz +2g,()F+g, (z))i g,(7)sin nﬂf} dx

n=1

gives the desired relation between the coordinates.

10
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§,(0)=T,(2)q,(7) | a7

where
(n-1)°n’
24+ (n-1’n’z

122
T()=-=CVT 135, T (2)=-

, ,0=2,4,6,... (18
2+(2n-1’7’z (18)

Therefore, the solution of equations (14) must be divided by 7,(z) in order to

recover the actual modal displacements. The next section presents the stability analysis
and response characteristics under different values of dynamic pressure and relaxation

parameter.
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Figure 3. Dependence of real and imaginary parts of the panel natural frequency on
relaxation parameter z for¢ =0;¢ =0.1;N, =0 (a) real parts, (b) imaginary parts.
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III. STABILITY AND LIMIT CYCLE OSCILLATIONS

The stability analysis is carried out by estimating the natural frequencies of the six modes
in the absence of system nonlinearities and by setting the non-homogeneous term in
equation (14) to zero. The dependence of the real and imaginary components of the
eigenvalues on the dynamic pressure is shown in Figures 2(a) and (b) for three different

values of relaxation parameter (z =0.001, 0.1, and 1), damping parameter, ¢ = 0.0, mass

parameter {’ = 0.1, and static axial load parameter N, = 0. It is seen that the real parts are

zero up to a critical value of the dynamic pressure, depending on the value of the
relaxation parameter, z, above which one becomes negative and the other positive
indicating the occurrence of panel instability. Note that the value z=0.0 corresponds to a
clamped-clamped panel, while z =o0 corresponds to simple supports. The dependence of
the components of the first and second eigenvalues on the relaxation parameter, z, is
shown for three different values of dynamic pressure, A =400, 450, and 500, and the
same parameters as Figure 2. It is seen that the eigenvalues possesses negative real parts
up to a critical value of relaxation parameter, above which one eigenvalue has a positive

real part indicating the occurrence of flutter.

Figures 4 and 5 show the boundaries of panel flutter in terms of the critical value of

aerodynamic pressure, A_, and the relaxation parameter, z . Figures 4 and 5 depict the

influence of the in-plane load, N,, and damping ratio, £, respectively. As expected, the

compression in-plane loading results in a reduction of the critical flutter speed. The
clamped panel (z<<1) requires more in-plane compression load to reach its flutter

speed. Figure 6 shows the dependence of flutter speed on the damping parameter, ¢ . For
a given relaxation parameter, there is a critical damping ratio, &, , above which the

damping becomes beneficial and the critical speed increases with the damping. The value

of £, is shown by a small circle on each curve and the locus of these points is shown by

the dotted curve. For ¢ < ¢, the damping is detrimental and results in a reduction the

13



flutter speed. The critical damping ratio is determined by setting dA/d¢ =0 and the

dashed curve in Figure 6 shows the locus of the critical damping ratio.
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Figure 5. Boundaries of panel flutter on the plane for different values of damping factor
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14




9.01 .02 0.63 .04 06.0%

ey

Figure 6. Boundaries of panel flutter on the 2 —¢ plane for different values of relaxation
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that separate between stabilizing and destabilizing damping effects.
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Figures 7 show the dependence of limit cycle oscillation (LCO) amplitude on
dynamic pressure for zero in-plane loading and different discrete values of the relaxation
parameter z in the form of supercritical bifurcation. Note that relaxation results in

moving the bifurcation point to lower values of dynamic pressure. Under compression in-

plane loading, N,=-37" and under low values of dynamic pressure the panel

experiences static buckling as shown in Figure 8. As the dynamic pressure increases the

panel enters a stable state until the dynamic pressure reaches the critical value, 4, above

which the panel exhibits LCO. This scenario of buckled, straight, and LCO states is well
known (see, e.g., Dowell, 1966) and is shown in the stability regions (see Figure 9)
estimated for the case, z=1. A three-dimensional diagram demonstrating the time
evolution of LCO amplitude and their dependence on the dynamic pressure is shown in
Figure 10 for zero in-plane loading and same parameters as in the previous figures. Note

that the time over which relaxation takes place is demonstrated in Figure 11(a).
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Figure 8. Bifurcation diagram for different values of relaxation parameter for
£ =0.0001, £=0.1, p,=0,and N, =-377.
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Figure 10. Three-dimensional plots of amplitudes time evolutions and their dependence
on dynamic pressure for ¢ =0.001, £ =0.1, 5, =1, and N, =0.
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Figure 11. (a) Relaxation of boundary conditions and (b) time history record of panel
deflection at x/a=0.75

Under the relaxation curve shown in Figure 11(a), the time history record of the total

deflection at x/a=0.75 is shown in Figure 11(b) for in-plane compression loading,
NO =—67°, dynamic pressure, A=200. Over the whole time domain, the panel

experiences two different regimes of oscillations, (1) growing amplitude limit cycle
oscillations, and (2) chaotic oscillations. If the dynamic pressure is reduced, say A =150,
the second regime exhibits snap-through irregular oscillations. For higher values of
dynamic pressure, A >500, the time history records exhibit regular LCO with a center
frequency that changes with time. Figures 12(a) and (b) show two cases of the FFT plots
and spectrograms of the panel total deflection for the cases of (a) A=700, and
¢ =0.0001, and (b) A =700, and & =0.02, respectively. It is seen that for low damping,
Figure 12(a) the panel frequency decreases with time as the panel boundary conditions
approach the case of simple supports. On the other hand, as the damping increases, the

panel frequency increases with time. Note there are two factors competing with other,
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namely, the structure’s geometric nonlinearity and the relaxation in the boundary
conditions. By increasing the damping factor, the structure geometric nonlinearity
overcomes the influence of relaxation and the frequency increases as shown in Figure

12(b).
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Figure 12 FFT plots and spectrograms for p, =0, N, =0, f =0.1
(a) A=700,4 =0.0001, (b) A=700,4 =0.02.
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The bifurcation diagram shown in Figure 13 reveals different regimes of panel
dynamic behavior. The figure is obtained by plotting the first return points of the panel
amplitude as the dynamic pressure varies for relation parameter, z=1, and in-plane

loading N, = -5z . The bifurcation begins with the buckled state up to 4 =109, chaotic

motion over the region 109 < A <140, period 3 over the region 140 < A <160, then a
region of chaotic motion mixed strips of period n occupying the range 160 <A <215,
Above A>215 the panel possesses regular limit cycle oscillations. Figure 14 shows
another bifurcation diagram where the relaxation parameter, z, is taken as the control

parameter, for dynamic pressure A =250, and in-plane pressure, N, =-5.87". For

0 < z < 0.43, the panel experiences LCO with varying amplitude. This region is followed
by a cascade of multi-periods up to z =~ 0.81, above which the panel exhibits chaotic
oscillations. Time history records corresponding to z=0.4, 0.7735, and 1, are shown in
Figure 15. The corresponding phase diagrams and FFT plots of these time history records

are shown in Figure 16.
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Figure 13. Bifurcation diagram for £ =0.0001, p, =0, £=0.1, N, =572,
and z=1
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Figure 16. Phase plots and FFT of time history records of Figure 15.

IV. CONCLUSIONS

The nonlinear flutter of a two-dimensional panel exposed to supersonic gas flow
involving six-mode interaction is studied in the presence of non-ideal boundary
conditions. The deterministic study includes stability analysis in terms of dynamic
pressure, relaxation parameter, damping ratio, and in-plane loading. For in-plane loading
below the critical buckling value, the panel experiences LCO above a critical
aerodynamic pressure governed by the relaxation parameter. For compressive in-plane
loads, the panel experiences periodic, quasi-periodic and chaotic oscillations depending

on the values of dynamic pressure, relaxation parameter and damping ratios.
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ABSTRACT

The influence of boundary conditions relaxation
on two-dimensional panel flutter is studied in the
absence and presence of random in-plane loading.
The boundary value problem of the panel involves
time-dependent boundary conditions that are
converted into autonomous form using a special
coordinate  transformation. The analysis s
restricted to two-mode interaction and includes the
influence of boundary conditions relaxation on the
panel modal frequencies and limit cycle amplitudes
in the time and frequency domains using
spectrogram technique. The relaxation and system
nonlinearity are found to have opposite effects on
the frequency evolution of the panel. Furthermore,
the damping of the panel exhibits a critical value
governed by the relaxation parameter, below which
the damping has a destabilizing effect and above
that critical value it has stabilizing effect.
Stochastic stability boundaries under random in-
plane loading are estimated below the critical
aerodynamic pressure. Depending on the system
damping and dynamic pressure, the evolution of the
panel frequency content can increase or decrease
with time as the panel approaches near simply
supported boundary conditions.

1. INTRODUCTION

Panel flutter under deterministic and stochastic
airflow has been extensively studied based on
simplified modeling of the structure, aerodynamics,
and boundary conditions. Most of the analyses of
panel flutter are based on ideal boundary conditions
such as clamped or simple supported edges.
However, most fasteners do not satisfy absolute
boundary conditions. In addition, fasteners
subjected to vibration often lose much of their
preload; this is known as relaxation. Vibration-
induced loosening and relaxation effects cause time-
dependent boundary conditions and depend on the
level of structural vibration. Recently, Ibrahim and
Pettit (2004) presented an extensive review of
dynamic problems associated with joint relaxation
and uncertainties.

A limited number of studies have considered the
influence of uncertainties in aeroelastic structures
and their boundary conditions. For example, Poiron
(1995) introduced uncertainties in analyzing the
flutter characteristics of aircraft models. The effect
of uncertainty in the boundary conditions, combined
with the variability of material properties, on
nonlinear panel aeroelastic response was studied by
Lindsley et al (2002a,b). Although Lindsley et al
(2002a,b) considered the effect of variability in
boundary rotational stiffness, none of the studies
cited above included the influence of time-
dependent boundary conditions on the flutter
characteristics of aeroelastic structures. Relaxation,
or the loss of pre-load in mechanical joints, is a
common problem in vibrating structures that must
be addressed to ensure that the structure will
perform satisfactorily throughout its expected life.
The present work is an extension of the work of
Ibrahim et al (1990, 1991, 2003) and Qiao et al
(2000) to examine the influence of relaxation of
boundary conditions on the panel flutter
characteristics such as modal natural frequencies
and limit cycle amplitudes, and stochastic stability
under random in-plane loading.

Nonlinear panel flutter with relaxation in the
boundary conditions is studied based on a
phenomenological model of joint preload relaxation
and random aerodynamic pressure superposed on
piston theory. The conventional boundary value
problem of the panel involves time-dependent
boundary conditions that are converted to an
autonomous form using a special coordinate
transformation introduced by Qiao et al (2000). The
resulting boundary conditions are combined with
the governing non-homogeneous, partial differential
equation that includes the influence of the boundary
condition relaxation. The analysis is restricted to
two-mode interaction. Results include the influence
of boundary condition relaxation on the panel
stability boundaries, modal frequencies, limit cycle
amplitudes in the time and frequency domains, and
mean square stability.




2. ANALYSIS

The governing equation of motion of a two-
dimensional panel under supersonic flow is
developed using Hamilton's principle. In order to
estimate the work done by aerodynamic loading, the
pressure on the panel is estimated using piston
theory with quadratic nonlinearity. With reference
to Figure 1, the governing nonlinear equation of
motion for the panel is
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where w(x,#) is the panel deflection, m, is the

panel mass per unit area, a is the panel length, £
is Young's modulus, /4 is the plate thickness,

D=ER /(12(1-v*)), and v is Poisson's ratio.

Figure I Schematic diagram of a two-dimensional
panel exposed to supersonic flow

Ap, is the air pressure difference through the
panel, N (t)=N_+ N _(f) is the external in-plane
load per unit span-wise length and may be random
in time, and ¢ is a linear viscous damping
coefficient. Equation (1) is subject to the boundary
conditions

2
D I'w(0,1)
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where «,(t) and «,(¢) represent torsional stiffness
parameters such that for ,(f) = (f) = we have

the case of purely clamped-clamped panel. For
simple supports, we have «,(f)=c,(¢)=0. In real
situations, both «,(#) and «,(¢) do not assume

these extreme cases and their values are very large
for clamped supports, or very small for simple
supports. In the dynamic case the boundary
conditions (2a,c) are non-autonomous. In order to
convert these conditions into an autonomous form,
we introduce the following transformation of the
response coordinate

w(x,1) = p(x; 2,2, ) u(%,2) ®)

where ¢(x;z,,z,) is a transformation function and
u(x,t) is the new coordinate which satisfies the
autonomous boundary conditions

0%u(0,1) _ "u(a,t)

7 7 =0 and u(0,f) =u(a,t)=0.(4)
X X

The transformation function @(x;z,,z,) depends
on the dimensionless relaxation parameter
z,(f)=D/aa,(t), i=1,2 representing the ratio of
the bending rigidity to the torsional stiffness of the
joints.

The governing equation of motion is discretized
using Galerkin’s method by assuming the expansion

u(x,7)= iqn (7)sinnzx 5)

where N is the total number of modes, and g,(7)

are the generalized coordinates. For the present
study, we consider two-mode interaction. The
following two nonlinear ordinary differential
equations are obtained
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where a prime denotes differentiation with respect




to the non-dimensional time parameter 7, the
coefficients «@; and bij are functions of the
relaxation parameter z(7), which is time
dependent, and was derived by Ibrahim et al (2003)

1+ tanh(- x(7 — rc))}-l

z(r) = Z,Z, |:Zo _(Zo -Z,) 1+ tanh(y7.)

Q)
2.1 Deterministic Analysis

The deterministic analysis is carried out based on
constant values of in-plane force N (r)=N_. The

influence of boundary conditions relaxation on the
panel eigenvalues can be examined by dropping the
nonlinear and non-homogeneous terms from the
modal equations (6). The dependence of the real
part on the dynamic pressure for different values of
relaxation parameter is shown in Figure 2 where the
crossing to positive values signals the occurrence of
flutter. As expected, as the panel nears clamped
boundary conditions the occurrence of flutter
requires relatively higher values of dynamic
pressure. The dependence of the critical value of
aerodynamic pressure on the in-plane static load,

N, , damping ratio, ¢, and relaxation parameter,

z, is shown in Figures 3, 4, and 5, respectively.
These figures represent the boundaries of panel
flutter for different values of the relaxation
parameter as shown in Figures 3 and 4.
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Figure 2 Dependence of real part of natural
Sfrequencies on the relaxation parameter for
different values of dynamic pressure parameter A

and for £ =0.01, £ =0.1, N, =0.

As expected the compressive in-plane loading
results in a reduction of the critical flutter speed.
The clamped panel ( z << 1) requires more in-plane
compression load to reach its flutter speed. Figure 4
shows the dependence of flutter speed on the
damping parameter ¢ . For a given relaxation

parameter, there is a critical damping ratio ¢,

above which the damping becomes beneficial and
the critical speed increases with the damping. For
¢ <¢,, the damping is non-beneficial and results in

a reduction the flutter speed. The critical damping
ratio is determined by setting d 4, /d{ =0 and the

dashed curve in Figure 4 shows the locus of the
critical damping ratio. For equal modal viscous
damping coefficients, the damping is known to
stabilize the panel. However, as shown in Ibrahim,
et al. (2003), and the references cited therein,
unequal modal damping coefficients result in a
paradoxical effect. Figure 5 shows the dependence
of the flutter speed on the relaxation parameter for
different values of static in-plane loading. The
destabilizing effect of damping is shown in Figure
6, where the instability region increases as the
damping increases then decreases depending on the
relaxation parameter.
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Figure 3 Boundaries of panel flutter on the 1— N,
plane for different values of relaxation parameter
and for § =0.001; f=0.1.

The panel experiences flutter above the critical
value of dynamic pressure depending on the
relaxation parameter. The inclusion of nonlinearities
in equations (6) causes the flutter to achieve a limit
cycle. However, as shown by the relaxation time
history record in Figure 8(a), the panel response
experiences nonstationary limit cycle oscillations as
the dynamic pressure exceeds its critical value. For
dynamic pressure values that exceed the critical
value of the clamped condition, the panel
experiences unsteady LCO during the relaxation
process as shown in Figure 8(b). It is seen that the
amplitude of LCO increases with time as the panel
boundary conditions change from clamped to near
simple support conditions. In all time history
records the LCO does not have zero mean value due
to the pressure differential.
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Figure 4 Boundaries of panel flutter on the A —¢
plane for different values of relaxation parameter
and for N,=0.0; £=0.1.
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Figure 5 Boundaries of panel flutter on the A—z
plane for different values of in-plane load ]\_/'0 and

for £ =0.001; £ =0.1.

The FFT and spectrogram plots of the first mode
shown in Figure 9 reveal that the frequency content
includes one spike at zero frequency, due to the
static pressure differential, and a band limited
response covering a frequency band that depends on
the dynamic pressure. This frequency band reflects
the time variation of the panel frequency with time.
This is demonstrated by inspecting the
corresponding spectrogram. The time evolution of

the frequency content represented by the
spectrogram demonstrates the correlation between
the variation of the frequency with the relaxation
process and dynamic pressure.
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Figure 6 Boundaries of panel flutter on the A—z
plane for different values of damping factor
showing the reversal effect of damping for

£=01,N,=0.

Figure 7 Three-dimensional plots of amplitudes
time evolutions and their dependence on dynamic

pressure for ¢ =0.001, f=0.1, D, =1, and N, =0.

For the case, A=500,4 =0.01, the response

frequency increases as the joint passes through
relaxation. On the one hand, the relaxation results in
a reduction of the panel natural frequency. On the
other hand, the nonlinearity of the panel is
stiffening and causes an increase in the frequency
with the LCO amplitude. It appears that the
nonlinearity overcomes the softening effect of



relaxation for the case of Figure 9.
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Figure 8 Time history of the (a) relaxation
parameter z ,(b) modal amplitudes for p, =1
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Figure 9 FFT plots and spectrograms for
A=500,¢ =0.01, £ =0.1, N, =0.

2.2 Random Analysis

The panel is exposed to turbulent pressure
fluctuations within the boundary-layers. These
fluctuations are random and the pressure is
characterized by a power spectral density for which
empirical expressions can be used, or an assumed
Markov field may be introduced. In this section we
consider randomness in the in-plane loading only.

In equations (6) the in-plane loading, N ,(7),
will be represented by a mean value superimposed
with a random component, ]on(T)=No + N, (1),

where N (7) is independent Gaussian wide-band
random processes with zero mean. Owing to the

nonstationarity -of the panel response it is
convenient to carry out Monte Carlo simulation to
estimate the response mean squares and stability
boundaries.

The dependence of the first mode mean square
response on the in-plane power spectral density for
zero dynamic pressure is shown in Figure 10 for
different values of relaxation parameter, z. It is
seen that the bifurcation point for the case of nearly
clamped-clamped boundaries ( z=0.001) occurs at
larger value of in-plane load level than the case of
near simply-simply supported panel (z=1). This
trend is maintained for any value of dynamic
pressure A <A, . For 4> 4, the bifurcation point

cr?

disappears and the panel possesses a non-zero mean
square response at zero in-plane level. Monte Carlo
simulation was carried out for an ensemble of 250
excitation samples and the response statistics were
determined in the time and frequency domains.
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Figure 10 Dependence of first mode mean square
response on in-plane power spectral density level
for different values of relaxation parameter z , and
¢=0.001, £=0.1, p,=N,=0, 1=0.
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Figure 11 Mean square response of the first mode
under in-plane random excitation for 1 =500,

£=0.001, =01, p,=1,N,=0, and S, =40

Figure 11 shows the time evolution of the mean
square response of the first mode. It reveals non-
stationarity during the relaxation process. Away
from region of relation the mean square response is
almost stationary as reflected in the beginning and
the end of the time history.




3. CONCLUSIONS

The influence of boundary conditions relaxation
on a two-dimensional panel flutter has been studied
under deterministic and random conditions. The
panel flutter is studied in terms of the first two
modes whose eigenvalues are estimated based on
the linear modal differential equations. The real
value of the eigenvalues determines the critical
flutter speed and the relaxation of the boundary
conditions reduces the value of the flutter speed.
The boundaries of panel flutter are obtained in
terms of in-plane load, relaxation parameter, and
damping factor. The damping of the panel exhibits a
critical value governed by the relaxation parameter,
below which the damping has a destabilizing effect
and above which it has stabilizing effect. The
dependence of the LCO amplitude on dynamic
pressure is obtained for different values of
relaxation parameter and is found to be bounded
between the two limiting cases of simply-supported
and clamped-supported boundary conditions. The
amplitude time history records reveal an increase in
the modal amplitudes after the end of relaxation
since the boundary conditions are nearly simply
supported. However, the frequency content is
governed by the relaxation, geometric nonlinearity,
and damping. There is a competition among these
three parameters, which causes the frequency
content to either increase or decrease with time.

Under random in-plane loading, the stochastic
mean square stability boundaries were obtained for
dynamic pressures below the critical flutter value.
As the dynamic pressure increases, but still below
the critical value, the stability region is enlarged
because of aerodynamic damping. Above the
critical value, the panel modes achieve random
LCO whose mean square bifurcates from the critical

value of in-plane excitation level, S, . The time
history records display non-stationary random

fluctuations during the relaxation process and the
scatter is persistent before and after relaxation.
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